Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
J Clin Periodontol ; 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2245673

ABSTRACT

AIM: Aerosols released from the oral cavity help spread the SARS-CoV-2 virus. The use of a mouthwash formulated with an antiviral agent could reduce the viral load in saliva, helping to lower the spread of the virus. The aim of this study was to assess the efficacy of a mouthwash with 0.07% cetylpyridinium chloride (CPC) to reduce the viral load in the saliva of Coronavirus disease 2019 (COVID-19) patients. MATERIALS AND METHODS: In this multi-centre, single-blind, randomized, parallel group clinical trial, 80 COVID-19 patients were enrolled and randomized to two groups, namely test (n = 40) and placebo (n = 40). Saliva samples were collected at baseline and 2 h after rinsing. The samples were analysed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and an enzyme-linked immunosorbent assay test specific for the nucleocapsid (N) protein of SARS-CoV-2. RESULTS: With RT-qPCR, no significant differences were observed between the placebo group and the test group. However, 2 h after a single rinse, N protein concentration in saliva was significantly higher in the test group, indicating an increase in lysed virus. CONCLUSIONS: The use of 0.07% CPC mouthwash induced a significant increase in N protein detection in the saliva of COVID-19 patients. Lysis of the virus in the mouth could help reduce the transmission of SARS-CoV-2. However, more studies are required to prove this.

2.
J Oral Microbiol ; 14(1): 2030094, 2022.
Article in English | MEDLINE | ID: covidwho-1648531

ABSTRACT

BACKGROUND: SARS-CoV-2 is continuously disseminating worldwide. The development of strategies to break transmission is mandatory. AIM OF THE STUDY: To investigate the potential of cetylpyridinium chloride (CPC) as a viral inhibitor. METHODS: SARS-CoV-2 Virus Like-Particles (VLPs) were incubated with CPC, a potent surfactant routinely included in mouthwash preparations. RESULTS: Concentrations of 0.05% CPC (w/v) commonly used in mouthwash preparations are sufficient to promote the rupture of SARS-CoV-2 VLP membranes. CONCLUSION: Including CPC in mouthwashes could be a prophylactic strategy to keep SARS-CoV-2 from spreading.

3.
Energies ; 14(21):7013, 2021.
Article in English | ProQuest Central | ID: covidwho-1512201

ABSTRACT

In this paper, the energy performance of a university campus in a tropical climate is assessed, and four mixed classroom buildings are compared using benchmarking methods based on simple normalization: the classic Energy Use Intensity (EUI), end-used based EUI, and people-based EUI. To estimate the energy consumption of the case studies, building energy simulations were carried out in EnergyPlus using custom inputs. The analysis found that buildings with more classroom spaces presented higher energy consumption for cooling and lighting than others. In comparison, buildings with a greater percentage of laboratories and offices exhibited higher energy consumption for plug loads. Nevertheless, differences were identified when using the people-based EUI since buildings with larger floor areas showed the highest values, highlighting the impact of occupant behavior on energy consumption. Given the fact that little is known about a benchmark range for university campuses and academic buildings in hot and humid climates, this paper also provides a comparison against the EUIs reported in the literature for both cases. In this sense, the identified range for campuses was 49–367 kWh/m2/year, while for academic buildings, the range was 47–628 kWh/m2/year. Overall, the findings of this study could contribute to identifying better-targeted energy efficiency strategies for the studied buildings in the future by assessing their performance under different indicators and drawing a benchmark to compare similar buildings in hot and humid climates.

SELECTION OF CITATIONS
SEARCH DETAIL